Models
TheDrummer: Cydonia 24B V4.1
Creative writing model based on Mistral Small 3.2 24B
Relace: Relace Apply 3
Relace Apply 3 is a specialized code-patching LLM that merges AI-suggested edits straight into your source files. It can apply updates from GPT-4o, Claude, and others into your files at 7,500 tokens/sec on average. The model requires the prompt to be in the following format: <instruction>{instruction}</instruction> <code>{initial_code}</code> <update>{edit_snippet}</update> Zero Data Retention is enabled for Relace. Learn more about this model in their [documentation](https://docs.relace.ai/api-reference/instant-apply/apply)
Google: Gemini 2.5 Flash Preview 09-2025
Gemini 2.5 Flash Preview September 2025 Checkpoint is Google's state-of-the-art workhorse model, specifically designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in "thinking" capabilities, enabling it to provide responses with greater accuracy and nuanced context handling. Additionally, Gemini 2.5 Flash is configurable through the "max tokens for reasoning" parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).
Google: Gemini 2.5 Flash Lite Preview 09-2025
Gemini 2.5 Flash-Lite is a lightweight reasoning model in the Gemini 2.5 family, optimized for ultra-low latency and cost efficiency. It offers improved throughput, faster token generation, and better performance across common benchmarks compared to earlier Flash models. By default, "thinking" (i.e. multi-pass reasoning) is disabled to prioritize speed, but developers can enable it via the [Reasoning API parameter](https://openrouter.ai/docs/use-cases/reasoning-tokens) to selectively trade off cost for intelligence.
Qwen: Qwen3 VL 235B A22B Thinking
Qwen3-VL-235B-A22B Thinking is a multimodal model that unifies strong text generation with visual understanding across images and video. The Thinking model is optimized for multimodal reasoning in STEM and math. The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning. Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows, turning sketches or mockups into code and assisting with UI debugging, while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.
Qwen: Qwen3 VL 235B A22B Instruct
Qwen3-VL-235B-A22B Instruct is an open-weight multimodal model that unifies strong text generation with visual understanding across images and video. The Instruct model targets general vision-language use (VQA, document parsing, chart/table extraction, multilingual OCR). The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning. Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows—turning sketches or mockups into code and assisting with UI debugging—while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.
Qwen: Qwen3 Max
Qwen3-Max is an updated release built on the Qwen3 series, offering major improvements in reasoning, instruction following, multilingual support, and long-tail knowledge coverage compared to the January 2025 version. It delivers higher accuracy in math, coding, logic, and science tasks, follows complex instructions in Chinese and English more reliably, reduces hallucinations, and produces higher-quality responses for open-ended Q&A, writing, and conversation. The model supports over 100 languages with stronger translation and commonsense reasoning, and is optimized for retrieval-augmented generation (RAG) and tool calling, though it does not include a dedicated “thinking” mode.
Qwen: Qwen3 Coder Plus
Qwen3 Coder Plus is Alibaba's proprietary version of the Open Source Qwen3 Coder 480B A35B. It is a powerful coding agent model specializing in autonomous programming via tool calling and environment interaction, combining coding proficiency with versatile general-purpose abilities.
OpenAI: GPT-5 Codex
GPT-5-Codex is a specialized version of GPT-5 optimized for software engineering and coding workflows. It is designed for both interactive development sessions and long, independent execution of complex engineering tasks. The model supports building projects from scratch, feature development, debugging, large-scale refactoring, and code review. Compared to GPT-5, Codex is more steerable, adheres closely to developer instructions, and produces cleaner, higher-quality code outputs. Reasoning effort can be adjusted with the `reasoning.effort` parameter. Read the [docs here](https://openrouter.ai/docs/use-cases/reasoning-tokens#reasoning-effort-level) Codex integrates into developer environments including the CLI, IDE extensions, GitHub, and cloud tasks. It adapts reasoning effort dynamically—providing fast responses for small tasks while sustaining extended multi-hour runs for large projects. The model is trained to perform structured code reviews, catching critical flaws by reasoning over dependencies and validating behavior against tests. It also supports multimodal inputs such as images or screenshots for UI development and integrates tool use for search, dependency installation, and environment setup. Codex is intended specifically for agentic coding applications.
DeepSeek: DeepSeek V3.1 Terminus
DeepSeek-V3.1 Terminus is an update to [DeepSeek V3.1](/deepseek/deepseek-chat-v3.1) that maintains the model's original capabilities while addressing issues reported by users, including language consistency and agent capabilities, further optimizing the model's performance in coding and search agents. It is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config) The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows.
xAI: Grok 4 Fast
Grok 4 Fast is xAI's latest multimodal model with SOTA cost-efficiency and a 2M token context window. It comes in two flavors: non-reasoning and reasoning. Read more about the model on xAI's [news post](http://x.ai/news/grok-4-fast). Reasoning can be enabled using the `reasoning` `enabled` parameter in the API. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#controlling-reasoning-tokens) Prompts and completions on Grok 4 Fast Free may be used by xAI or OpenRouter to improve future models.
Tongyi DeepResearch 30B A3B
Tongyi DeepResearch is an agentic large language model developed by Tongyi Lab, with 30 billion total parameters activating only 3 billion per token. It's optimized for long-horizon, deep information-seeking tasks and delivers state-of-the-art performance on benchmarks like Humanity's Last Exam, BrowserComp, BrowserComp-ZH, WebWalkerQA, GAIA, xbench-DeepSearch, and FRAMES. This makes it superior for complex agentic search, reasoning, and multi-step problem-solving compared to prior models. The model includes a fully automated synthetic data pipeline for scalable pre-training, fine-tuning, and reinforcement learning. It uses large-scale continual pre-training on diverse agentic data to boost reasoning and stay fresh. It also features end-to-end on-policy RL with a customized Group Relative Policy Optimization, including token-level gradients and negative sample filtering for stable training. The model supports ReAct for core ability checks and an IterResearch-based 'Heavy' mode for max performance through test-time scaling. It's ideal for advanced research agents, tool use, and heavy inference workflows.