Models
Z.ai: GLM 5
GLM-5 is Z.ai’s flagship open-source foundation model engineered for complex systems design and long-horizon agent workflows. Built for expert developers, it delivers production-grade performance on large-scale programming tasks, rivaling leading closed-source models. With advanced agentic planning, deep backend reasoning, and iterative self-correction, GLM-5 moves beyond code generation to full-system construction and autonomous execution.
Qwen: Qwen3 Max Thinking
Qwen3-Max-Thinking is the flagship reasoning model in the Qwen3 series, designed for high-stakes cognitive tasks that require deep, multi-step reasoning. By significantly scaling model capacity and reinforcement learning compute, it delivers major gains in factual accuracy, complex reasoning, instruction following, alignment with human preferences, and agentic behavior.
Aurora Alpha
This is a cloaked model provided to the community to gather feedback. A reasoning model designed for speed. It is built for coding assistants, real-time conversational applications, and agentic workflows. Default reasoning effort is set to medium for fast responses. For agentic coding use cases, we recommend changing effort to high. Note: All prompts and completions for this model are logged by the provider and may be used to improve the model.
Anthropic: Claude Opus 4.6
Opus 4.6 is Anthropic’s strongest model for coding and long-running professional tasks. It is built for agents that operate across entire workflows rather than single prompts, making it especially effective for large codebases, complex refactors, and multi-step debugging that unfolds over time. The model shows deeper contextual understanding, stronger problem decomposition, and greater reliability on hard engineering tasks than prior generations. Beyond coding, Opus 4.6 excels at sustained knowledge work. It produces near-production-ready documents, plans, and analyses in a single pass, and maintains coherence across very long outputs and extended sessions. This makes it a strong default for tasks that require persistence, judgment, and follow-through, such as technical design, migration planning, and end-to-end project execution. For users upgrading from earlier Opus versions, see our [official migration guide here](https://openrouter.ai/docs/guides/guides/model-migrations/claude-4-6-opus)
Qwen: Qwen3 Coder Next
Qwen3-Coder-Next is an open-weight causal language model optimized for coding agents and local development workflows. It uses a sparse MoE design with 80B total parameters and only 3B activated per token, delivering performance comparable to models with 10 to 20x higher active compute, which makes it well suited for cost-sensitive, always-on agent deployment. The model is trained with a strong agentic focus and performs reliably on long-horizon coding tasks, complex tool usage, and recovery from execution failures. With a native 256k context window, it integrates cleanly into real-world CLI and IDE environments and adapts well to common agent scaffolds used by modern coding tools. The model operates exclusively in non-thinking mode and does not emit <think> blocks, simplifying integration for production coding agents.
Free Models Router
The simplest way to get free inference. openrouter/free is a router that selects free models at random from the models available on OpenRouter. The router smartly filters for models that support features needed for your request such as image understanding, tool calling, structured outputs and more.
StepFun: Step 3.5 Flash
Step 3.5 Flash is StepFun's most capable open-source foundation model. Built on a sparse Mixture of Experts (MoE) architecture, it selectively activates only 11B of its 196B parameters per token. It is a reasoning model that is incredibly speed efficient even at long contexts.
MoonshotAI: Kimi K2.5
Kimi K2.5 is Moonshot AI's native multimodal model, delivering state-of-the-art visual coding capability and a self-directed agent swarm paradigm. Built on Kimi K2 with continued pretraining over approximately 15T mixed visual and text tokens, it delivers strong performance in general reasoning, visual coding, and agentic tool-calling.
MiniMax: MiniMax M2-her
MiniMax M2-her is a dialogue-first large language model built for immersive roleplay, character-driven chat, and expressive multi-turn conversations. Designed to stay consistent in tone and personality, it supports rich message roles (user_system, group, sample_message_user, sample_message_ai) and can learn from example dialogue to better match the style and pacing of your scenario, making it a strong choice for storytelling, companions, and conversational experiences where natural flow and vivid interaction matter most.
Writer: Palmyra X5
Palmyra X5 is Writer's most advanced model, purpose-built for building and scaling AI agents across the enterprise. It delivers industry-leading speed and efficiency on context windows up to 1 million tokens, powered by a novel transformer architecture and hybrid attention mechanisms. This enables faster inference and expanded memory for processing large volumes of enterprise data, critical for scaling AI agents.
OpenAI: GPT Audio
The gpt-audio model is OpenAI's first generally available audio model. The new snapshot features an upgraded decoder for more natural sounding voices and maintains better voice consistency. Audio is priced at $32 per million input tokens and $64 per million output tokens.
OpenAI: GPT Audio Mini
A cost-efficient version of GPT Audio. The new snapshot features an upgraded decoder for more natural sounding voices and maintains better voice consistency. Input is priced at $0.60 per million tokens and output is priced at $2.40 per million tokens.